Precision Aerobatics Judging Questions - with Answers Explained Set E

Andrew Palmer

With thanks to Russell Edwards and Peter Uhlig

What Will We Cover?

About myself, my interest in judging and F3A rules Where to find information on judging
The manoeuvre execution guide and objective judging
NZ F3A P-23 Schedule Questions
(full run through in two weeks)
Tonight's ten questions
Tools to help with judging (and flight training!)
Any questions

But first, lets get ready with Poll Everywhere

Its anonymous and free!
(1) Poll Everywhere

Please remember!

- The rule book is not perfect
- It does not have all the answers (but almost)
- I don't have all the answers
- But I will try and be a good navigator!
- We all hope to fly well, be judged fairly and judge fairly ourselves
(And IMAC is judged differently)

About Myself

Where to find Judging Information?

FAI AEROMODELLING COMMISSION [CIAM]

HOME ABOUTUS OURSPORT EVENTS RECORDS AWARDS NEWS SPORTINGCODE DOCUMENTS E-PLENARIES PROJECTS CONTACT US

SPORTING CODE
SPORTING GODE-SECTION 4:AEROMODELING
27 APR 2022 Volume CIAM General Rules - edition 2022 (733 KB) \downarrow
22 May 2022 Volume F1 - Free FLight - Edition 2022 (version2) (615 KB) \downarrow
07 DEC $2021 \quad$ Volume F2 - Control Line - edition 2022 (1847 KB) \downarrow
07 DEC 202I Volume F2 - Control Line Annex 4j - edition 2022 (199 KB) \downarrow
07 DEC 2021 Volume F3 Aerobatics - edition 2022 (2669 KB) \downarrow
22 MAY 2022 Volume F3 - Helicopters edition 2022 (version 2) (2410 KB) \downarrow
07 DEC 2021 Volume F3 Pylon Racing - edition 2022 (1016 KB) \downarrow
070 Dec 2021 Volume F3 Soaring - edition 2022 (1080 KB) I.

1. WHAT WAS THE DEFECT, or mistake?
? Over, or under-rolling (or spin, or snap)
T Poor shape or geometry
? Rolls not on middle of lines
? Absence of lines
? Entry, exit poor
W Wrong angles
[3 Misrelation between line lengths
? Different roll rates
T? Etc.
2. HOW SERIOUS was the defect, or mistake?

W Was it big (major)?
? Or was it small (minor)?
3. HOW OFTEN did you see the same defect, or mistake in a particular manoeuvre?

How many defects were there in TOTAL?
4. Was the Flying Speed constant in climbing and descending parts of the manoeuvre?
5. WHAT WAS THE POSITIONING of the manoeuvre?
6. WHAT WAS THE SIZE of the manoeuvre?
7. Was the manoeuvre partially or completely outside of the manoeuvring zone?

All manoeuvres should be executed with:

Geometrical Accuracy
Constant Flying Speed
Correct positioning within the manoeuvring zone
Size matching to the size of the manoeuvring zone

Judging is based on the trajectory of the aircraft's centre of gravity rather than its attitude. Manoeuvres must be wind corrected except where the aircraft is in a stalled condition (Spins, Stalls and Snaps).

Criteria for judging:

1. Type of defect
2. Severity of defect
3. The number of times any one defect occurs, as well as the total number of defects.
4. Positioning of manoeuvre and size relative to other manoeuvres in the flight

Basic rule is to deduct 1 point for 15 degrees variation from defined manoeuvre geometry, but 0.5 points only for half of this. Lines should be judged more harshly than deviations in yaw or roll.

Defect

For significant differences in Constant Flying Speed	0.5-1
Sizing different relative to other manoeuvres in the flight	0.5-1
Positioning - Appropriate distance out should be based on visibility of aircraft	
Manoeuvre not centred (per 15 degrees)	0.5-4
More than 175 m out (visibility is the criterion)	1
Greater than 200 m out	2-3
Outside 60 degree markers, further out is worse (based on \% out of box)	1-10
Lines	
Length of lines not graded	No deduction
Manoeuvre doesn't start and end with a horizontal line	1 per manoeuvre
Mis-relationship between lines	0.5 or more
Rolls not centred on lines (except Split S and Immelmann)	0.5-2
No line before/after roll (except Split S and Immelmann)	3
Loops	
Radius (Compare each radius that was just flown to the last radius flown) (e.g. All loops or part loops within a manoeuvre must have the same radius)	$0.5-2$ or more for each occurrence
Segmentation (Every segmentation must be down graded)	0.5 or more
Departure from vertical plane	0.5 or more
Part loops must not be too tight or too loose (Too tight or too loose must be downgraded)	0.5-1
Turn-arounds are positioning manoeuvres. Entry/exit altitude can be different heights	No deduction
Rolls	
Variation in roll rate	0.5 or more
Slowing down / speeding up at end of roll	1 per 15 degrees
Start or stop not crisp (Each occurrence)	0.5 or more
Not centred on lines (except Split S and Immelmann)	0.5-2
No line before/after roll (except Split S and Immelmann)	3

Change in pause length within point rolls

Missed or extra point in point roll(s)
Roll or part-roll in wrong direction
0.5 or more per occurrence
1 per 15 degrees
Zero scored

Roll/Loop Combinations

For Immelmann \& Split S, roll not immediately before/after loop or part loop For Immelmann, roll starts before loop or part loop completed
On Cuban 8's or half Cubans, rolls must be centred on lines
Humpty Bumps must have consistent radii in all part loops
Integrated rolls or part rolls not smooth and continuous and correctly integrated
Snap Rolls - Use same basic judging criteria as axial rolls above. If it's not an axial or barrel roll, it's a snap roll

Attitude (positive or negative) at pilot's discretion	No deduction
Stall/break from line of flight not observed and barrel rolls	Severe $(5+)$
Axial roll disguised as a snap	Severe ($5+$)
Aircraft un-stalls during snap	1 per 15 degrees
Spins - Nose up attitude, nose drops as aircraft stalls. Simultaneously, wing drops in	
direction of spin	1 per 15 degrees
Gain in altitude prior to spin	1 per 15 degrees
Severe yawing/weathercocking when near stalled	No deduction
Drift when stalled or near stalled (not outside aerobatic zone)	Zero scored
No stall, snap rolled, or spiral-dived into spin	1 per 15 degrees
Slides into spin	Severe (5+)
Forcing spin in opposite direction on initial rotation	$4-5$
Forcing spin from high angle of attack with down or up elevator	No deduction
Conditions (e.g., no wind) may mean aircraft does not completely stop	1 per 15 degrees
Rotation errors judged in same manner as rolls	Severe (5+)
Reversal of rotation not immediate (e.g., becomes un-stalled)	1
Roll rate in reversal significant (slight difference ok)	1 per 15 degrees
Unloading spin (e.g., finishing spin with ailerons)	No deduction
Specific attitude of aircraft during spin not judged as long as it remains stalled	1

0.5-2

1 per 15 degrees
0.5-3
0.5-3

1 per 15 degrees

No deduction
Severe (5+)
Sever
1 per 15 degrees

1 per 15 degrees
1 per 15 degrees
No deduction
Zero scored
1 per 15 degrees

4-5
No deduction
1 per 15 degrees
Severe (5+)

1 per 15 degrees
No deduction

Stall Turns
Pivot up to $\frac{1}{2}$ wingspan 1
Pivot up to 1 wingspan 2-3
Pivot $>1 \frac{1}{2}$ wingspans 4-5
Pivot >2 wingspans or flops over Zero scored
$\begin{array}{ll}\text { Torques off } & 1 \\ \text { Pendulum movement after pivot } & 1\end{array}$
Skid before reaching stall turn (early rudder) 1
Drift when stalled or near stalled (not outside aerobatic zone) No deduction
Part loops on entry/exit not constant and equal radius 0.5-3
Rolling Circles - Mainly about maintaining consistent circular flight path, altitude, roll rate and roll integration (Apply same rules as per rolls)
150m distance requirement not applied. Deduct where $>350 \mathrm{~m}$ 1-3
Deviations in geometry 1 per 15 degrees
Either performed towards or away from judges No deduction
Roll or part roll in wrong direction
Zero scored

1. The flight path of rolls that are integrated

 with loops or horizontal circles should be smooth, continuous, and of constant radius. Where an integrated roll is required, how should quick-rolling be downgraded?| 0 points (ignore the barrel
 roll) \square | Downgrade by the one
 point/15 degree rule \square |
| :--- | :--- |
| 1 point \square | Severe downgrade (more
 than 5 points) \square |
| $2-3$ points \square | Zero the manoeuvre \square |

5B.8.10 - Flight paths of continuous rolls or part-rolls that are integrated with loops or horizonte circles should be smooth, continuous, and of constant radius. Where an integrated roll is required, quick-rolling should be downgraded using the 1 point per 15 degree rule.

2. The general guide for downgrading deviations from defined manoeuvre geometry is to subtract:

```
1 \text { point for each approximate 15 degree deviation, but}
0.5 points only for half of this }
1 \text { point for each approximate 5 degree deviation, but}
0 . 5 \text { points only for half of this } \square
2 points for each approximate 45 degree deviation, but
1 point only for half of this }
```


1 POINT PER 15° DEVIATION

1 point must be subtracted for each approximate 15
degrees deviation, but 0.5 points only for half of this.

5B.8.2-1 point must be subtracted for each approximate 15 degrees deviation, but 0.5 points only for half of this.

3. The length of a line should be considered in the score if:

```
The model is under-powered and the manoeuvre is
flown with short lines }
The model draws long lines throughout the manoeuvre
\square
There are several lines with a given relationship within
a manoeuvre \square
```


LINES

5B.8.3 All aerobatic manoeuvres are entered and exited by a horizontal line of recognisable length.

When no horizontal line is flown between two manoeuvres, the justcompleted manoeuvre must be downgraded by 1 point and the upcoming manoeuvre must be downgraded by 1 point.

All lines within a manoeuvre have a start and an end which define their length. They are preceded and followed by part loops (or part circles).

The length of a line should only be graded when a manoeuvre contains more than one line with a given relationship to each other ie as in a square loop.

If there is a minor deviation in the relationship then 0.5 point is subtracted, and more points are subtracted for greater deviations.

5B.8.3 - The length of a line should only be graded when a manoeuvre contains more than one line with a given relationship to each other ie as in a square loop.
4. The length of a line within a manoeuvre should only be graded when a manoeuvre contains more than one line with a given relationship to each other. Eg: As in a square loop. Minor deviations should be penalised by the subtraction of:

0 points \square	3 points \square
0.5 point \square	4-5 points \square
1 point \square	Zero the manoeuvre \square
2 points \square	

LINES

5B.8.3 All aerobatic manoeuvres are entered and exited by a horizontal line of recognisable length.

When no horizontal line is flown between two manoeuvres, the justcompleted manoeuvre must be downgraded by 1 point and the upcoming manoeuvre must be downgraded by 1 point.

All lines within a manoeuvre have a start and an end which define their length. They are preceded and followed by part loops (or part circles).

The length of a line should only be graded when a manoeuvre contains more than one line with a given relationship to each other ie as in a square loop.

If there is a minor deviation in the relationship then 0.5 point is subtracted, and more points are subtracted for greater deviations.

5B.8.3 - If there is a minor deviation in the relationship then 0.5 point is subtracted, and more points are subtracted for greater deviations.

5. What determines the radius required for loops and part-loops within manoeuvres?

```
All radif throughout the entire flight must be the same
\square
The distance of the model from the pilot 
The radius of the first loop or part-loop within a
manoeuvre }
As the manoeuvre progresses, the judge will compare
each radius that was just flown to the last radius flown
\square
```


5B.8.4 - The first radius of a manoeuvre does not define the radii for the remaining radii of a manoeuvre but it is a starting point. As the manoeuvre progresses, the judge will compare é radius that was just flown to the last radius flown and if there is a difference, then a downgra will be given based on the severity of the difference.

6. What downgrade would you apply where a pilot performs a fast axial roll where a snaproll is required?

$\mathbf{0}$ points \square	3 points \square
$\mathbf{1}$ point \square	Severe downgrade (more than 5 points) \square
2 points \square	Zero the manoeuvre \square

Barrel roll or axial roll instead of snap roll:
 downgrade more than -5 points

5B.8.7 - Axial rolls disguised as snap-rolls must be severely downgraded (more than 5 points)

7. What penalty is applied for a 30 degree over-rotation on a slow roll?

$\mathbf{0}$ points \square	3 points \square
$\mathbf{1}$ point \square	30 points \square
2 points \square	Zero the manoeuvre \square

5B.8.2 - 1 point must be subtracted for each approximate 15 degrees deviation, but 0.5 poin only for half of this.
5B.8.12 - ...the stop of rotation is judged in the same manner as for a roll, downgraded 1 poi per 15 degree deviation of heading.

8. What penalty is applied for a slight variation in the line length between points in a point roll?

0 points \square	3 points \square
0.5 point \square	$4-5$ points \square
1 point \square	Zero the manoeuvre \square
2 points \square	

5B.8.5 e) - Lines between consecutive part-rolls must be short and of equal length. 5B.8.3 - The length of a line should only be graded when a manoeuvre contains more than one line with a given relationship to each other ie as in a square loop. If there is a minor deviation in the relationship then 0.5 point is subtracted, and more points are subtracted for greater deviations.

9. What penalty is applied where one or more points in a point roll is not visible?

$\mathbf{0}$ points \square	Severe downgrade (more than 5 points) \square
$\mathbf{1}$ point \square	Downgrade by the one point/15 degree rule (based on the initial rotation) \square
2 points \square	Zero the manoeuvre \square
3 points \square	

5B. 13 - no stop/line between [point rolls] = 1 point per 15 degrees

10. What penalty is applied where there is a difference in radii between loops or part-loops within a manouver (per occurrence)? (Note: Check all correct answers)

$\mathbf{0}$ points \square	Severe downgrade (more than 5 points) \square
1 point \square	Downgrade by the one point/15 degree rule (based on the initial rotation) \square
2 points \square	Zero the manoeuvre \square
3 points \square	

The first radius of a manoeuvre does not define the radii for the remaining radii of a manoeuvre but it is a starting point. As the manoeuvre progresses, the judge will compare each radius that was just flown to the last radius flown and if there is a difference, then a downgrade will be given based on the severity of the difference.

5B.8.4 - Each occurrence of a minor difference in radius must downgrade the manoeuvre by 0.5 point, while more severe deviations may downgrade it by $1,1.5,2$ or more points for each occurrence.

What Tools are out there to Help with Judging (and Flight Training)?

F3A Zone Pro (iOS and Android)

Google play

Download on the
App Store

F3A Zone Pro on Android also lets you easily walk out to the flight line (in a safe position) and see who is flying at $150-165 \mathrm{~m}$ (and who is not!) - this is great for gaining an appreciation of where we should be flying.

FLIGHT COACH

HOME RESEARCH THEPLOTTER THEMAP INSTRUCTIONS SETUP FAQ RESOURCES CONTACT

Home

The Flight Coach Project develops data driven tools for precision aerobatic pilots and judges with the aim of making the sport more objective. The project was started by a group of keen F3A and IMAC competitors, but the work is also applicable to other RC and full size aerobatic disciplines.

Most of our work involves installing inexpensive GPS and attitude tracking hardware in the aircraft, then post processing the data on the ground to provide feedback. All the Flight Coach project outputs are free to use (see specific license details in Instructions/Software).

FlightCoach．org
File：Gendrated P23．

Ardupilot Autonomous Aerobatics Project

https://www.youtube.com/watch?v=MmUDC3A7Ntk

(1) (C)

Autonomously Flown Scale Schedule

(using a Galactik 2m F3A model)

Autonomously Flown NZ Clubman Schedule

(No Stall Turn - yet)

F3A P-23 - coming soon!

ROLL

Score
No Attempts

START OVER

SHOW DETAILS

How much error do you see?

Any Questions?

